
Computation of Optimal MEV in Decentralized Exchanges

Mengqian Zhang∗

Yale University
mengqian.cs@gmail.com

Yuhao Li
Columbia University

yuhaoli@cs.columbia.edu

Xinyuan Sun
Flashbots

xinyuan@flashbots.net

Elynn Chen
New York University

elynn.chen@stern.nyu.edu

Xi Chen
New York University
xc13@stern.nyu.edu

Abstract

In the ever-evolving blockchain ecosystem, decentralized exchanges (DEXs) have seen sig-
nificant growth, which, however, also brought challenges of Maximal Extractable Value (MEV).
Unlike centralized exchanges, DEXs offer a decentralized platform for cryptocurrency trading.
Such trading mechanisms primarily include Constant Function Market Makers (CFMMs) and
batch auctions. This paper delves into the optimal MEV strategies across these two DEX frame-
works. As our first result, we show it is NP-hard to compute an optimal strategy in any CFMMs,
when the fraction of swap fee is any constant larger than zero (e.g., 0.3% being commonly used
in Uniswap pools).

The second part of our paper examines DEXs utilizing batch auctions, which have gained a
lot of attention for their appealing properties. By treating tokens and transactions as goods and
traders within a pure exchange market, batch auctions can be formulated as a linear market,
allowing exchange rates and trading outcomes in a batch to be derived from the prices and allo-
cation in its market equilibrium. This design ensures fairness and efficiency from the perspective
of economics. Despite the general belief that batch auctions are less vulnerable to MEV due to
uniform pricing and order independence of transactions, we highlight that the block builder’s
current ability to rearrange the batch is certainly sufficient to extract MEV in batch auctions,
where the strategic behavior is a novel market equilibrium manipulation. We further explore
the computation and show that: When the transactions in a batch form a Fisher market, an
optimal attack can be computed in polynomial time; When the transactions form a general
Arrow-Debreu market, it is NP-hard to find such one.

Our results present a complete picture of the complexity of optimizing MEV in DEXs,
contributing valuable insights to the ongoing discourse on DEX security and the solutions for
addressing MEV therein.

Keywords: Decentralized Exchanges, Maximal Extractable Value, Batch Auctions, Market
Equilibrium

∗Majority of the work was done when the author was at New York University.

1 Introduction

Within the evolving landscape of blockchain technology, the decentralized finance (DeFi) space
has witnessed unprecedented growth, with various financial services available on-chain. As the
cornerstone of the DeFi movement, Decentralized Exchanges (DEXs) mark a significant shift in the
paradigm of asset exchange within the blockchain ecosystem. Leveraging smart contracts on the
blockchain, DEXs offer a peer-to-peer marketplace for users to trade cryptocurrencies (also known
as tokens) without the intermediation of a central authority, which is aligned with the ethos of
decentralization. Nowadays, the daily volume of DEXs has reached billions of US dollars [1].

Automated Market Makers (AMMs) are the most widely used type of DEXs. It replaces tradi-
tional order books with liquidity pools, each of which is composed of tokens of trading pairs and
managed by an on-chain smart contract. In AMMs, users directly swap their tokens against the
pool without waiting for a matching order. The exchange rate is algorithmically determined based
on the reserves of tokens in the liquidity pool. The most commonly used are constant functions,
such as the constant product formula in Uniswap [2], which requires the product of token reserves
in the pool to remain constant before and after a trade. Thus, these AMMs are also known as con-
stant function market makers (CFMMs). To avoid unexpected slippage, users are encouraged to
set a slippage tolerance, which is equivalent to a limit/threshold of the exchange rate below which
their transactions should fail. During a trade, a small fraction (say, 0.3%) of tokens is charged as
swap fees to reward liquidity providers for their contribution to the liquidity.

Despite the huge advantages offered by DEXs, they also introduce novel challenges and vul-
nerabilities. A notable concern is Maximal Extractable Value (MEV) [3], a phenomenon that
underscores the potential for block builders (e.g., miners, validators) to exploit their position by
transaction insertion, deletion, and reordering for financial gain. As of September 15th, 2022, prior
to the Ethereum Merge, the total MEV extracted from the Ethereum network amounted to $675.62
million [4], a figure that has since escalated to $1.81 billion as of February, 2024 [5]. In the context
of AMMs, the sensitivity to the processing order of transactions exposes them to various forms of
MEV exploitation, notably through front-running [3], where transactions are strategically placed
ahead of others for profit, and sandwich attacks [6], which exploit the price impact of a victim
trade by placing orders on both sides. In addition to bad user experience, these unexpected MEV
behaviors have also caused issues including network congestion, high gas prices, and the risk of
blockchain re-organization and consensus instability [3, 7].

To address these vulnerabilities, the novel exploration of batch auctions presents a promising
DEX design. Instead of processing transactions individually, DEXs utilizing batch auctions such
as SPEEDEX [8] aggregate orders over a short period and execute them at a set of uniform prices.
Here, “uniform” means that all successfully executed transactions in the same swapping direction,
say X → Y, are under the same exchange rate pX /pY . Then, the design’s key lies in setting prices
for all involved tokens. This problem turns out to be closely related to the market equilibrium. By
modeling tokens and transactions as goods and traders in a pure exchange market, respectively,
a batch forms a linear market where each player’s utility function is linear, and the unique price
vector under market equilibrium is exactly what batch auctions need [8]. This feature of uniform
exchange rates eliminates the execution sequence in batch auctions and makes such DEXs resistant
to front-running, sandwich attacks, and internal arbitrage. Thus, it is a general belief that batch
auctions are fundamentally less vulnerable to MEV. However, as we are going to show, it still leaves
enough non-trivial space for a block builder to attack batch transactions and obtain MEV.

As a summary, in this paper, we propose:

1

With DEXs becoming ever more prevalent and impactful, it is imperative to finally settle the
computational complexity of the MEV optimization problems therein.

1.1 Our Model and Contributions

This paper studies the computation of optimal MEV in the two different types of DEXs, i.e.,
CFMMs and batch auctions. The analysis is under the same framework: both scenarios share the
same format of transactions, the same strategy space, and the same utility function.

The Model. Specifically, we consider the exchange transactions among n tokens {τ1, · · · , τn}. In
both scenarios, a transaction is trying to swap one type of token X for another Y, represented in
the format of (X → Y, δX , r) but denoted by Swap and Batch, respectively. In other words, each
Swap or Batch transaction is composed of three components, i.e., the exchange direction X → Y,
the number of tokens willing to sell δX , and the threshold for the exchange rate r which means the
user should receive at least δX · r amount of token Y in return.

For a Swap transaction, tokens are exchanged by a certain CFMM, which supports the exchange
between two involved tokens. Without loss of generality, we explore the optimal MEV among the
Swap transactions between two tokens X ,Y ∈ {τ1, · · · , τn}. Instead, in the batch auction scenario,
all Batch transactions involving multiple tokens can be executed in the same batch.

Regarding the strategy space and utility function, we follow the consensus of the community
that MEV refers to the additional value that can be extracted from block production by includ-
ing, excluding, and reordering transactions in a block. From now on, we use attacker/mediator
interchangeably to refer to the role (e.g., block builders, miners) who can extract MEV. Given
a set of m user transactions

{
Swapi

}
i∈[m]

or
{
Batchi

}
i∈[m]

, the attacker is able to insert some

transactions of the same type, select a subset of user transactions, and compute an order for these
selected transactions, which together form an MEV strategy. For the batch auction scenario, the
attacker can ignore the last reordering step because the order has no influence on the execution
outcome of transactions.

Under a set of user transactions, once given an MEV strategy, the transactions’ outcomes as
well as the attacker’s profits are determined. In this paper, the utility of a strategy is measured by
the overall value of the attacker’s final token holdings. Note that the attacker’s profits are all from
its own transactions. What utility functions of both scenarios (formally defined in Equation (1) and
Equation (2)) do is to enumerate all attacker’s newly added transactions, and for each transaction,
its utility is the value of tokens finally received minus the value of tokens it brought. Here, the
value of a token is measured by its exogenous price, which represents the attacker’s self-belief –
it may be the price in another DEX, another domain, or even the off-chain information (e.g., the
price of tokens in a centralized exchange like Coinbase). Throughout this paper, we assume that
the exogenous prices remain the same during the attack, which is around 12 seconds in Ethereum.

Our Contributions. In literature, many excellent works studied the same or similar MEV issue
in AMMs, with a focus on empirical approaches [9, 7, 6, 3]. One recent work [10] studies a special
case with no swap fees, where they succeed in presenting a polynomial time algorithm. Yet, no
polynomial time algorithm for the general setting (where the fraction of swap is a constant larger
than 0, say 0.3%) is known. This is not a coincidence, as our first main theorem (Theorem 1) shows
that computing a strategy that obtains optimal MEV is, in fact, NP-hard.

In addition, we initial the study of MEV on batch swaps. It’s a widespread belief that batch
auction is fundamentally less vulnerable to MEV since the outcome doesn’t depend on the order
of transactions. However, we first observe the ability to insert and delete transactions is already

2

sufficient for the mediator to extract MEV (see Example 1 for a very concrete example)! By adopting
the formulation of market equilibrium, such behavior is a novel market equilibrium manipulation,
where a strategic player in the market has a very strong power – they can arbitrarily kick other
participants out of the market and insert several fake identities. Although seemingly unreasonable,
this is what could happen with block builders in the current blockchain system. This seeming
unreasonableness exactly reflects the potential vulnerability of batch auctions, which, to the best
of our knowledge, was not discussed before. One plausible reason is that while one can manipulate
the batch auction in such a way, it is not clear how to manipulate since the outcome is not as
easily predictive as that in AMMs. To this end, as our technical contributions, we discover many
underlying combinatorial structures of the optimal attacks, the insights of which are going to be
shown in the next subsection (Section 1.2).

As our second main contribution, we fully characterize the computational complexity of optimal
MEV in batch auctions based on the structure of market: When the transactions in a batch form
a Fisher market, an optimal attack can be computed in polynomial time (in fact, in almost linear-
time!) (Theorem 2); When the transactions form a general Arrow-Debreu market, it is NP-hard to
find such one (Theorem 3).

1.2 Overview of Insights in the Proofs

While optimizing MEV is computationally hard under both popular decentralized exchange scenar-
ios (AMMs and Batch auctions), the routines towards these two theorems, in fact, provide many
distinct insights, which we summarize next.

Let’s first get intuition on why the mediator could get some MEV in CFMMs and then explain
why it is hard to obtain optimal MEV. Imagine that at the latest state of a CFMM pool, the
exchange rate of two tokens is exactly the same as the ratio of their exogenous prices. Then, the
mediator could execute an arbitrary user transaction, after which the exchange rate in the CFMM
must deviate. Thus, this leaves a space for the mediator to back-run and obtain some profits.

This is an ideal argument which, however, is not always true when there is a constant fraction
of swap fees (in particular, f = 0.3% of tokens is charged in common Uniswap pools). Specifically,
when the volume of a user’s transaction is small, the profits obtained by back-running may not be
able to beat the swap fees! Thus, we should adapt our intuition to try to back-run some large user
transactions (i.e., transactions that want to swap a large amount of tokens), and there is where
another constraint comes in: the slippage tolerance of these transactions.

Suppose that there is a transaction Swap that wants to swap a very large number of Y tokens
for some X tokens, but with a non-trivial slippage tolerance requirement. The mediator would
meet the following challenge to finish the best back-running: The mediator would like to find a set
of users’ X → Y transactions to reach a state at which the exchange rate of Swap exceeds but is
closest to its slippage tolerance. Thus, the NP-hard problem used in the reduction is the Partition
problem, which exactly reflects the hardness of achieving the goal above. We will provide more
intuition about this argument in Section 3.3 before the formal proof of Theorem 1.

Batch auctions have a more sophisticated structure, as they bring the concept of equilibrium.
Thus, one small change of the batch (insert, delete, or modify a transaction) may result in dramat-
ically different outcomes for every transaction, making it difficult to analyze compared to AMMs.
Nevertheless, we observe many underlying combinatorial structures for optimal attacks and high-
light the following two points, which we found insightful:

• In general, the mediator only needs to insert transactions with the same type as user transac-

3

tions. Here, the “type” refers to which two tokens are involved in a transaction (Lemma 2).
This implies there is always an optimal attack that preserves the market structure; in other
words, the mediator is never necessary to complicate the market structure. In particular,
when the mediator is attacking a set of user transactions that form a Fisher market, it suf-
fices to consider attacks that remain a simple Fisher market, which is crucial to our efficient
optimal algorithm for Fisher markets;

• In general, the directed graph of selected user transactions is acyclic (Lemma 3). The proof of
this lemma follows a simple trick: If there was some cycle, then the mediator can locate one
user transaction that can obtain profits, and replace it with their own transaction of exactly
the same content. Despite being simple and intuitive, this actually illustrates a kind of front-
running in batch auctions! Another consequence is that, under such kind of optimal attacks,
there is essentially no “exchange” between two user transactions! The acyclic property also
leads to identifying the hardness structure from the Feedback Arc Set problem, which we
reduce to the MEV optimization problem for the general Arrow-Debreu market.

Finally, we briefly discuss the insights we can obtain from the two NP-hard problems we used.
Even though NP-complete problems are all equivalent in terms of worst-case complexity, their
corresponding optimization versions can behave dramatically differently in terms of approximation.
In particular, the Partition problem has a fully polynomial-time approximation scheme (FPTAS),
but the Feedback Arc Set problem only has constant approximation algorithm.

We conjecture that there is also a fully polynomial-time approximation scheme for the MEV
optimization problem in AMMs, while it remains NP-hard to have even a good approximation
algorithm for that in batch auctions. In fact, even for the instances in the reduction (that are
constructed from instances of the Feedback Arc Set problem), we couldn’t characterize the optimal
MEV value, but only its very loose lower and upper bounds in terms of the solution of the Feedback
Arc Set (see Lemma 6). Although by carefully chosen parameters, this is enough for us to finish
the NP-hard reduction, we suspect the optimal MEV is generally produced by some non-linear
programming with discrete decisions. If this conjecture is true, it also reflects the different levels
of vulnerability of the two popular DEX systems.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we provide more background on
the MEV, its concrete behaviors in AMMs, and the design of batch auctions. In Section 3, we
provide the formulation of the MEV optimization problem in AMMs and show its NP-hardness
(Theorem 1). In Section 4, we first provide a light preliminary of market equilibrium and formulate
batch auctions in this framework. We then argue that the current strategy is already sufficient for
the block builder to extract MEV, and formulate the optimal MEV problem. Then, we provide
two general lemmas that reveal combinatorial structures in optimal attacks. Finally, we prove
our computational results regarding the Fisher market and the general Arrow-Debreu market. We
discuss some future directions in Section 5.

4

2 Background and Related Work

2.1 Maximal Extractable Value

Although DEXs allow users to directly interact with on-chain smart contracts through a trading
transaction when they want to exchange cryptocurrencies, such a transaction only represents the
individual’s trading intent. The trading is truly executed when the transaction is included in a block
on the canonical chain, which is managed by miners (in Proof-of-Work networks) or validators (in
Proof-of-Stake networks). In the block-building process, they have the authority to decide which
transactions are included in a block and in what order. It’s found that block builders are able to
extract additional value from block production in excess of the standard block rewards and gas
fees by manipulating the block content. This additional value was initially referred to as “miner
extractable value” and modified to be “maximal extractable value” since the transition from proof-
of-work to proof-of-stake via The Merge. In practice, besides block builders, a large portion of
MEV is extracted by independent network participants called “searchers.” As the name suggests,
they run complex algorithms to search profitable MEV opportunities and have bots to submit
MEV-capture transactions automatically. The studies of MEV strategies naturally interest these
roles, which are collectively referred to as the attacker or mediator in this paper.

2.2 MEV in AMMs

In the context of AMMs, the MEV phenomenon arises primarily due to the arbitrage opportunities
caused by the price movement within a DEX or price discrepancy among DEXs. DEX arbitrage is
the simplest and most well-known MEV opportunity. For a pair of tokens, if two DEXs are offering
different exchange rates, someone can buy one token in the lower-priced DEX and sell it in the
higher-priced DEX in a single transaction. Zhou et al. [7] translate the detection of DEXs arbitrage
into a negative cycle detection problem, and Wang et al. [11] further analyze the profitability
conditions and optimal trading strategies of cyclic arbitrages among multiple DEXs. After detecting
such a profitable MEV opportunity, someone can submit its own transaction with the same arbitrage
logic but a higher gas price to steal the profit by front-running. Torres et al. [12] perform a large-
scale analysis of the real profits made by front-running attacks on Ethereum, providing evidence that
front-running is highly lucrative. Qin et al. [9] provide a generalized transaction replay algorithm to
clone and front-run a victim transaction without the need to understand the underlying transaction
logic. Sandwich attack [6] is another common MEV behavior where a trader can “manually” create
the arbitrage opportunity by exploiting a large order, the profit of which is quantified by Qin et
al. [9]. Many other behaviors like back-run arbitrage [13] and cross-domain MEV [14] are also
discussed in the literature.

The most related to us are the following papers. Bartoletti et al. [10] explore the same MEV
optimization problem in AMMs but without swap fees, where the optimal attack is a multi-layer
sandwich. [15] considers the practical scenario with swap fees and computes the optimal strategy
to sandwich a single transaction. Our work fills this research gap by providing the computational
hardness of attacking multiple transactions in AMMs with swap fees. Another related work is [16],
which studies both with and without fees in a special AMM with greedy sequencing rule.

2.3 Batch Auctions

Batch auctions represent a novel evolution in DEX designs to address certain inefficiencies and MEV
challenges inherent in AMMs. This paper mainly follows the mathematical model in SPEEDEX [8],

5

which maps the computation of batch prices to a well-studied equilibrium computation problem of
pure exchange markets (details are introduced later in Section 4.1). In SPEEDEX, the batch exe-
cution is triggered when the core SPEEDEX engine receives a new block, followed by an algorithm
query to compute clearing valuations and thus the execution outcomes. Similarly, CowSwap [17],
which uses mixed-integer programming to clear offers in batches, also contains two steps: a cen-
tralized entity known as the “driver” aggregates all user orders; these orders are then relayed to
specialized centralized actors, termed “solvers”, who bid to determine the settlement price (and
over half [18] of non-stablecoin CowSwap orders are traded against private liquidity). As we will
show later, the need to organize a batch through a mediator brings the risk of MEV. To the best
our knowledge, we are the first to study MEV in batch auctions.

3 Optimal MEV in Constant Function Market Makers

In this section, we study the computation of optimal MEV in CFMMs. It is well known that the
outcomes of transactions executed on CFMMs are sensitive to transaction-ordering attacks, which
leaves space for a mediator (e.g., miner, validator) to extract profits. We start by formalizing the
CFMM and the execution of transactions.

3.1 CFMMs Formalization and Execution of Transactions

We consider a CFMM A for two types of tokens X ,Y ∈ {τ1, · · · , τn}, where we use s = (x, y) as
a state of A that represents the current reserves of tokens X and Y. The trading invariant can
be modeled by a constant function on two variables F (x, y). Throughout this paper, we will only
consider the Swap-like transactions, and there is no deposit or redemption of liquidity, so sometimes
we equivalently use s = (x, y) ∈ F to represent a reserving point on the curve F (·, ·). We assume
two natural properties about these constant functions: (1) for any two points (x, y), (x′, y′) ∈ F ,
we have x > x′ ⇔ y < y′, namely, when the reserve of X increases, the reserve of Y decreases and

vice versa; (2) F (x, y) is differentiable and the marginal exchange rate
∣∣∣∂F/∂x
∂F/∂y

∣∣∣ is decreasing with

respect to x. We note that most CFMMs satisfy these two properties, including Uniswap v2 and
v3. Finally, we denote the fraction of the swap fee in AMM A by f ∈ [0, 1).

From the two properties above, we know that for any x, there is exactly one y such that
(x, y) ∈ F and vice versa. So for simplicity of notations, we use Fy(x) to denote that y such that
(x, y) ∈ F and similarly define Fx(y).

Suppose we are given a set of Swap transactions {Swap1, · · · ,Swapm} on AMM A, where each
Swapi = (δX , r) or Swapi = (δY , r). Without any ambiguity, we omit the swapping direction in
this section and use the shortened notation Swapi(δX , r) to represent that the i-th transaction
Swapi would like to sell δX amount of token X to obtain at least δX · r amount of Y, i.e., with r
as the lowest acceptable exchange rate. The meaning of Swapi(δY , r) is analogous.

Pick an arbitrary permutation π : [m] → [m] as the execution order of all these m transactions
and let s0 = (x0, y0) be the initial state of A before processing these transactions. The execu-
tion works as follows: Consider the i-th round and Swapπ(i) = (δX , r). Let ∆ := Fy(xi−1) −
Fy (xi−1 + (1− f)δX). If the condition ∆ ≥ δX · r holds, then this swap is successfully executed
and si = (xi−1 + (1− f)δX , Fy(xi−1 + (1− f)δX)); otherwise, the transaction fails and si = si−1.
The case where Swapπ(i) = (δY , r) can be defined similarly.

6

3.2 MEV Optimization Problem

In this subsection, we formalize the mediator’s strategies and define its strategy space. Intuitively,
a mediator can potentially delete some users’ transactions, insert its own transactions, and pick an
arbitrary order of execution of the selected transactions.

Definition 1 (Strategy Space). Given a set of users’ transactions
{
Swapi

}
i∈[m]

and an initial

state s0 = (x0, y0), a mediator could create k its own transactions
{
Swapi

}
i∈[m+1:m+k]

, select a

subset of users’ transactions S ⊆ [m], and pick an execution order (a permutation) over all these
transactions π : [|S ∪ [m+ 1 : m+ k]|] → S ∪ [m+ 1 : m+ k].

Definition 2 (Utility Function). Mediator’s profit U({Swapi}i∈[m+1:m+k], S, π) is defined as∑
i∈[|S|+k],π(i)∈[m+1:m+k]

xi−1 − xi
1− f · 1{xi>xi−1}

· p∗x +
yi−1 − yi

1− f · 1{yi>yi−1}
· p∗y, (1)

where p∗x and p∗y are exogenous (or say, off-chain) prices of X and Y respectively.

This definition generalizes the idea of sandwich attack and can capture a wide range of order
manipulation attacks. The goal of the mediator is to find a strategy ({Swapi}i∈[m+1:m+k], S, π) that
maximizes its MEV (profits). Sometimes we also refer to such a strategy as an optimal strategy.

The following observation can help us simplify the notations when we study Swap transactions.
Note that the lemma doesn’t hold for Batch transactions, which we are going to study in the next
section.

Observation 1 (No-Deleting in AMMs). Given any set of users’ transactions
{
Swapi

}
i∈[m]

and

an initial state s0 = (x0, y0), it is without loss of generality to assume that the optimal strategy
satisfies S = [m], i.e., the mediator will always select the full set of transactions.

Proof. The proof is easy. For mediator’s transactions, it can always create the transactions that
it needs. For the users’ transactions, if the mediator didn’t select some users’ transactions in an
optimal strategy, it can also equivalently put them at the very end of the sequence, and it will not
affect the mediator’s profits.

Based on the observation above, we may omit the parameter S below for simplicity of notations.

3.3 Computational Hardness

This section systematically studies the optimal MEV on Swap transactions. Recall that in lit-
erature many excellent works studied the same or similar attack, with specific focus on empirical
approaches [9, 7, 6, 3], or special cases (e.g., no swap fee [10] or attacking one user’s transaction [15]),
but no polynomial time algorithm for the general setting is known. This is not a coincidence, as
what we are going to show in this section.

In particular, as our main theorem in this section, we show that computing an optimal strategy
for MEV is NP-hard when swap fee f > 0 is any constant (say f = 0.3%), which is what happens in
the real blockchain world. This indicates that if one wants to attract optimal MEV, it is necessary
to design efficient heuristic or approximate algorithms, but not hope for a theoretically efficient
optimal algorithm.

7

Figure 1: An illustration of the reduction in the proof of Theorem 1. The dark line means x-axis
which represents the reserved amount of X tokens. Light blue shadow means the “arbitrage-free”
interval [xℓ, xr], where any mediator’s transaction cannot obtain profits if the execution state is
in this interval due to the trade fees. The orange blocks represent the set of X → Y users’
transactions; they satisfy that starting from the initial state, after executing all these transactions,
the state remains in the arbitrage-free interval (so that the mediator can never use them to obtain
profits). The purple block represents a large enough user’s Y → X transaction (which is the source
where the mediator could obtain profits by back-running), and the purple dotted line represents
the state that exactly satisfies its slippage tolerance. The left green part is where the mediator can
back-run and obtain profits. The mediator’s goal is to find a subset of users’ X → Y transactions
such that the state exceeds and is closest to the dotted purple line, so the green part is as large as
possible. This construction can encode any instance of the Partition problem, formally shown in
the proof of Theorem 1.

Theorem 1. Let f ∈ (0, 1) be any universal constant. It is NP-hard to solve the problem of finding
an optimal strategy on Swap transactions, even with the constant function F (x, y) = xy (i.e.,
Uniswap v2).

Before getting into details of the proof, we note that an intuitive illustration of the reduction
is provided in Figure 1.

Proof. We reduce the NP-hard Partition problem to our problem. Recall that an instance of the
Partition problem contains m positive integers {c1, · · · , cm} and asks if it can be partitioned into
two subsets S1, S2 ⊆ [m] with S1 ∩ S2 = ∅ and S1 ∪ S2 = [m] such that the sum of numbers in S1
equals that in S2, i.e.,

∑
i∈S1

ci =
∑

i∈S2
ci =

1
2

∑
i∈[m] ci.

Suppose that we are given an arbitrary set ofm positive integers {c1, · · · , cm} such that the sum
of all ci’s is an even number (otherwise, the answer to the Partition problem is obviously “no”).

To start the reduction, we will construct a CFMM, a set of uses’ transactions
{
Swapi

}
, and

an initial state. Concretely, it suffices for us to use the product function F (x, y) = xy (other
CFMMs that satisfy our two properties defined in Section 2 will also work). Let the initial state

s0 = (x0, y0) be such that ∂F/∂x
∂F/∂y = p∗x/p

∗
y. We will have m+1 users’ transactions; m of them will be

Swap(X → Y), namely, they are trying to sell X to obtain Y, and the other will be Swap(Y → X).

Let xr be such that
∂Fy(xr)

∂x = (1−f)p∗x
p∗y

and xℓ be such that
∂Fy(xℓ)

∂x = p∗x
(1−f)p∗y

. Let K be the

smallest positive integer such that t/K ≤ xr − x0. Then we let {d1, · · · , dm} = {c1/K, · · · , cm/K}
and t = 1

2

∑
i∈[m] di. Our problem is still to decide whether there exists S1 ⊆ [m] such that∑

i∈S1
di = t. Obviously this doesn’t change the original problem, but makes it easier for us to

finish the reduction.
Let x∗ = x0 + t. We first construct a huge user’s transaction Swapm+1 = (Y → X , δy), where

8

δy = (y0 − Fy(x
∗) + L)/(1 − f) with a sufficiently large number L. The exchange ratio threshold

here is crucial: it is defined as

r =
x∗ − Fx((1− f)δy + Fy(x

∗))

δy
.

Intuitively, this means the transaction Swapm+1 can be successfully executed at some state s =
(x, y) if and only if x ≥ x∗. (⋄)

We then construct m users’ transactions
{
Swapi

}
i∈[m]

, where each Swapi = (X → Y, δX =

di/(1−f)) (we’ll specify the thresholds of exchange ratios of these transactions later; they will also
be crucial). Intuitively, this construction means if we only execute users’ transactions, then we can
reach the state s∗ = (x∗, Fy(x

∗)) if and only if there exists S1 ⊆ [m] such that
∑

i∈S1
di = t, which

corresponds to the answer to the given instance of the Partition problem.
Ideally, we would like the “if and only if” above also extents to the general case where we allow

the mediator to insert some of its own transactions for the purpose of maximizing its MEV. This is
where we need to be careful to construct the thresholds of exchange ratios of the users’ transactions.

For each transaction Swapi for i ∈ [m], we set the threshold of exchange ratio to be

Fy(x
∗ − di/(1− f))− Fy(x

∗)

di/(1− f)
.

Intuitively, this means if a user’s transaction Swapi is executed at state s = (x, y), then the
Swap(δX) is successfully executed if and only if x ≤ x∗−di/(1−f). Equivalently, after successfully
executing any user’s transaction, the state s = (x, y) satisfies x ≤ x∗. (⋆)

This finishes the construction of an instance of the optimal MEV problem. Next, we show that
if a mediator can find an optimal strategy, then it can solve the given Partition instance.

To this end, we define the mediator’s maximal MEV as follows (recall that xℓ is such that
∂Fy(xℓ)

∂x =
p∗y

(1−f)p∗x
):

MMM = (y0 + L− Fy(xℓ)) · py −
xℓ − Fx(y0 + L)

1− f
· px.

The correctness of our reduction follows from the next lemma.

Lemma 1. There exists a strategy such that U({Swapi}i∈[m+2:m+1+k], π) ≥ MMM if and only if there
exists S1 such that

∑
i∈S1

di = t.

The reason that this lemma implies the correctness of the reduction is simply that if the mediator
can find an optimal strategy, then it can easily compare the profit with MMM and solve the Partition
problem. We postpone the proof to Appendix A.

4 Optimal MEV in Batch Auctions

Different from AMMs discussed above, batch auction is a trading mechanism that computes a
uniform exchanging price and executes all transactions simultaneously. So the prices and outcome
of the execution do not depend on the order of the transactions. Because of this, batch auctions are
believed to be fundamentally less vulnerable to MEV compared to order-dependent mechanisms.

However, even though batch swaps are robust against front-running and sandwich attacks dis-
cussed above, we observe new strategy space for a mediator to obtain MEV by manipulating the

9

block content. In the rest of this section, we first introduce the concept of market equilibrium
for efficiency of the batch price, which was also introduced in the design of SPEEDEX as the
mathematical foundation [8]. Then we initial and formalize the study of MEV therein.

4.1 Market Equilibrium Formulation of Batch Auctions

Pure Exchange Market. A pure exchange market consists of n divisible goods, denoted by
{τ1, · · · , τn} and m traders, denoted by {T1, · · · , Tm}. Every trader Ti initially owns some endow-
ment wi ∈ Rn

≥0, where wij represents the amount of τj that Ti owns. Every trader i has its own
utility function Ui : Rn

≥0 → R≥0, where Ui(xi) means Ti’s utility if she gets a bundle of goods with
amount xij for τj . In this paper, we focus on linear market, meaning that the utility function
Ui =

∑
j uijxij , where uij ≥ 0 is the utility (or say preference) of trader i for a unit amount of

goods τj . In economics, it has long been understood that prices are determined by the interplay of
supply and demand where under a competitive price, supply precisely meets demand. Such an idea
was captured by market equilibrium.

Definition 3 (Market Equilibrium). A price vector p along with an allocation x is a market
equilibrium if the following conditions meet:

• Market Clearance:
∑

i∈[m] xij =
∑

i∈[m]wij for all j ∈ [n];

• Budget Constraint:
∑

j∈[n] xijpj =
∑

j∈[n]wijpj for all i ∈ [m]; and

• Individual Optimality: xi ∈ OPTi(p), where OPTi := argmaxUi(xi) among all xi that satisfies
the budget constrain

∑
j∈[n] xijpj ≤

∑
j∈[n]wijpj.

The existence of market equilibrium (sometimes called general equilibrium) under mild condi-
tions was proved by Arrow and Debreu [19] and independently by McKenzie, which is regarded by
many as the crown jewel of Mathematical Economics. Our world is much easier to navigate: We
will show that the batch prices can be computed by a linear market equilibrium.

Consider a set of Batch transactions
{
Batch1, · · · ,Batchm

}
among tokens {τ1, · · · , τn},

where each Batchi = (X i → Y i, δX i , ri) would like to swap δX i amount of token X i for some token
Y i and the exchange rate between Y i and X i should be at least ri (i.e., the amount of received Y i

should be no less than riδX i). Here, tokens naturally correspond to the goods in the market. Every
transaction Batchi can be viewed as a trader, where its endowment is wi,j = δX i for τj = X i and
wi,j = 0 otherwise. Its utility function is defined as Ui(xi) = ri · xij + xik for τj = X i and τk = Y i.
Given any set of Batch transactions, we refer to the corresponding market as an Arrow-Debreu
market if there is no more specified structure (this is mainly for comparison of the Fisher market
that we will define below).

The market constructed above is a linear market in which every participant’s utility function
is linear (in fact, it is even more succinct – only two goods have non-zero coefficients). The linear
market enjoys many nice properties: First, previous work [20] implies that our batch auction
structure always has a unique competitive price vector1, so that we do not face the equilibrium
selection problem. In the distributed system where the Batch transactions are eventually processed
by an arbitrary node, it releases us from the concern that certain nodes may strategically decide

1The uniqueness is in terms of scaling, which means scaling the equilibrium price vector by a constant is also an
equilibrium. It does not matter because what is really needed is the ratio of prices, which remains the same no matter
how it is scaled.

10

the exchange rates. Second, it is polynomial-time computable, while for some other classic markets
like Leontief or CES (stands for constant elasticity of substitution) functions, the computation of
market equilibrium is computationally hard (PPAD-complete [21, 22]). Third, it is generally well
understood from the works of past decades by researchers from economics, computer science, and
operation research.

Proposition 1 ([8]). By modeling the tokens {τj}j∈[n] and transactions
{
Batchi

}
i∈[m]

as goods

and traders, under the (unique) competitive price vector p and arbitrary equilibrium allocation x,
it satisfies

• Internal arbitrage-free: The prices are internal arbitrage-free (simply because we have a uni-
form price vector);

• Soundness: Any exchange (allocation) follows the price vector p and meets its threshold
requirement for the exchange ratio;

• Completeness: For any Batchi with its threshold ri, τj = X i and τk = Y i, if pj/pk > ri,
then Batchi sells all its X i and gets δX i · pj/pk amount of Y i.

4.2 MEV Optimization Problem

The feature of uniform price in batch auctions makes it resistant to several DEX-related MEV
behaviors like sandwich attacks and internal arbitrage. As a result, MEV seems impossible in batch
auctions. We first note that this is not the case – we observe new strategic behavior, which is high-
levelly in line with block content manipulation, but different from well-known MEV strategies like
front-running or sandwich attack. The point is the execution result of a Batch transaction depends
on which other transactions are included in the batch. Therefore, a strategic mediator can affect the
outcome of exchanges by manipulating the batch contents (inserting and deleting transactions). The
mediator still respects the market equilibrium outcomes, but that of the manipulated block content,
during which it may gain profits. We give an example to provide more intuition.

Example 1 (MEV in Batch Auctions). Consider the scenario with three tokens {A,B,C} and three
user transactions

{
Batchi

}
i∈[1,3] where Batch1 = (A → B, 2, 0.5), Batch2 = (B → C, 1, 4),

and Batch3 = (C → A, 4, 0.5). Assume the exogenous prices of tokens are all one, namely,
p∗A = p∗B = p∗C = 1. Given this batch of transactions, an honest mediator makes them ex-
change with each other (i.e., three users receive 1B, 4C, 2A, respectively) under the price equi-
librium pA = 0.5, pB = 1, pC = 0.25. Nevertheless, a strategic mediator can extract some addi-
tional value by re-organizing the batch. One method is to exclude Batch2 and insert two attacking
transactions

{
Batch4 = (B → A, 1, 2), Batch5 = (A→ C, 2, 2)

}
. By executing them in the batch{

Batchi
}
i∈{1,3,4,5}, the attacker receives 2A and 4C at the cost of 1B and 2A, obtaining a net

benefit of 3 (recall that their exogenous prices are all 1). Another way is to directly replace the
Batch2 with the same attacking transaction Batch2′ = (B → C, 1, 4). In this way, the attacker
can also get a profit of 3.

Next, we give formal definitions of an attacker’s strategy space and utility function.

Definition 4 (Strategy Space). Given a batch of user transactions
{
Batchi

}
i∈[m]

, a mediator

could select a subset of all these transactions S ⊆ [m], create k its own Batch transactions{
Batchi

}
i∈[m+1:m+k]

, and execute them in a same batch.

11

Without loss of generality, we assume that all mediator’s newly inserted transactions will be
successfully executed; otherwise, removing failed ones from the set

{
Batchi

}
i∈[m+1:m+k]

makes no

difference in results.

Definition 5 (Utility Function). Mediator’s profit U(S,
{
Batchi

}
i∈[m+1:m+k]

) is defined as∑
i∈[m+1:m+k]

−wij · p∗j + xiℓ · p∗ℓ , (2)

where Batchi = (τj → τℓ, δτj = wij , ri), x is an allocation under equilibrium, and vector p∗

represents the exogenous prices of tokens.

This section asks the following research question: Given a batch of user transactions, what’s
the optimal strategy for a mediator to maximize its utility? Based on the structure of the given
user transactions, we discuss this problem for the Fisher Market (Section 4.4) and the general
Arrow-Debreu market (Section 4.5), respectively.

4.3 Combinatorial Structures in Optimal Attacks

In this section, we present two general lemmas that provide more intuition about how to tackle
the MEV Optimization Problem in Batch auctions, and are very useful to simplify the analysis of
optimal attacks. Before that, from a technical perspective, we recall the definition of the economy
graph of a market, which was defined by Maxfield [23]. In our context, we will use the terminology
of transactions, and define both the directed and undirected versions of economy graphs for our
purpose.

Definition 6 (Economy Graph). Given a set of transactions
{
Batchi

}
i∈[m]

, we define a directed

graph as follows. Each vertex corresponds to a token τi. For two tokens τi and τj, we add a directed
edge from τi to τj if there is a transaction Batchk that swaps τi for τj. We call this (directed)
graph G the economy graph of

{
Batchi

}
i∈[m]

.

The undirected economy graph H is defined as the same graph as the directed economy graph G
but all edges are changed to undirected.

Intuitively, if there is an undirected edge between two tokens in H, this means there is a user
who is interested in these two tokens (would like to swap one token for the other).

Now we are ready to introduce the lemmas.
At a high level, the first lemma works on the side of inserting attacking transactions, stating

that for an optimal attack, it is never necessary to make the undirected economy graph more
complicated: it is sufficient to only insert transactions along edges of the undirected economy graph
of initial users’ transactions

{
Batchi

}
i∈[m]

. The second lemma concerns the side of selecting users’

transactions, showing that for an optimal attack, it suffices to select users’ transactions such that
the directed economy graph of them is acyclic. These two lemmas bring some insights for the
mediator to search for an optimal attack and are crucial for both our efficient algorithm design and
NP-hard analysis in subsequent sections.

Lemma 2. Let H = (V,E) be the undirected economy graph of users’ transactions
{
Batchi

}
i∈[m]

.

There is an optimal attack (S,
{
Batchi

}
i∈[m+1:m+k]

) such that the undirected economy graph H ′ =

(V,E′) of
{
Batchi

}
i∈[m+1:m+k]

satisfies E′ ⊆ E.

12

Proof. First, we assume that the original undirected economy graph H = (V,E) is connected,
otherwise the mediator can attack each connected component separately.

Given any general strategy (S,
{
Batchi

}
i∈[m+1:m+k]

), we will construct a new strategy such that

(1) the undirected economy graph of the attacking transactions in the new strategy is a subgraph of
H; and at the same time (2) the mediator’s profit is the same as using (S,

{
Batchi

}
i∈[m+1:m+k]

).

By doing so, we can conclude this lemma. In particular, the selected users’ transactions are the
same, so we focus on the attacking transactions next.

Consider any transaction Batchi = (τj → τj′ , wij , ri) for some i ∈ [m+1 : m+k]. Suppose that
Batchi is successfully executed and (j, j′) ̸∈ E. Note that if Batchi is not successfully executed,
we can simply remove it from the strategy and everything will remain unchanged.

We will replace the transaction Batchi with a set of new transactions such that the edges that
correspond to new transactions are a subset of E, and the mediator’s profit remains unchanged.

Since H is connected, there is at least one simple path from j to j′. Denote such path by
v0, · · · , vt, where v0 = j and vt = j′. Let p be the equilibrium price vector of (S,

{
Batchi

}
i∈[m+1:m+k]

).

We construct t new transactions based on these information as follows. For every ℓ ∈ [t], we let the
new transaction be (τvℓ−1

→ τvℓ , wij ·
pvℓ−1

p0
,

pvℓ
pvℓ−1

). Note that by construction all these new transac-

tions are with respect to E, i.e., the edges that correspond to these newly constructed transactions
are subset of E.

Now we show that the mediator’s profit remains unchanged. Note that mediator brings wij ·
pvℓ−1

p0
more τvℓ−1

tokens. But it is easy to verify that under new market equilibrium, each transaction

(τvℓ−1
→ τvℓ) will be successfully executed, and obtain wij · pvℓ

p0
many taken τℓ. In total, the

payoff of middle transactions will be canceled and the mediator will pay wij many token τj and get
wij ·

pvt
p0

= wij ·
pj′
pj

many token τj , which is exactly the same as before.

This finishes the proof.

Lemma 3. There is an optimal attack (S,
{
Batchi

}
i∈[m+1:m+k]

) such that the economy graph of

selected users’ transactions
{
Batchi

}
i∈S is acyclic.

Proof. Without loss of generality, assume that all transactions in this batch, namely, all transactions{
Batchi

}
i∈S∪

{
Batchi

}
i∈[m+1:m+k]

are successfully executed. Otherwise the mediator can remove

all transactions that are not executed and the profit will be the same.
Suppose there is a directed cycle in the economy graph of selected users’ transactions. Without

loss of generality, assume the cycle is
(
Batch1,Batch2, · · · ,Batcht

)
with a vertex sequence

(τ1, τ2, · · · , τt, τ1), where t ∈ [2,m]. Then, under equilibrium, there are only two cases.

• Case 1: the exchange rates of all transactions in the cycle are exactly the same as the ratio of
corresponding tokens’ exogenous prices. In this case, replacing one of the user’s transactions
with an attacking transaction of the same content has no impact on the equilibrium nor the
mediator’s profit (as the profit of this replacement transaction is 0).

• Case 2: the exchange rates of transactions in the cycle are not all the same as the ratio of

corresponding tokens’ exogenous prices. Note that
∏t−1

j=1

pτj
pτj+1

· pτt
pτ1

= 1 =
∏t−1

j=1

p∗τj
p∗τj+1

· p∗τt
p∗τ1

,

where
pτj

pτj+1
is the equilibrium exchange rate of the transaction swapping τj for τj+1 and

p∗τj
p∗τj+1

is the exogenous rate of these two tokens. In this case, at least one transaction’s equilibrium
exchange rate is better than the exogenous one, say Batchj with the direction τj → τj+1.

13

In other words, pj/pj+1 > p∗j/p
∗
j+1. Then, replacing this user’s transaction by an attacking

transaction with the same content (namely, remove this user’s transaction from the batch and
insert a mediator’s transaction with the same content) does not influence the equilibrium but
increases the mediator’s utility.

In this way, for any attacking strategy with a directed cycle in the economy graph of selected user
transactions, there is another strategy with no such cycle, such that the attacker receives no less
profit than the previous one.

This finishes the proof.

4.4 Optimal MEV under Fisher Market

Our main result in this section is an efficient (in fact, almost linear-time) algorithm for the medi-
ator to compute an optimal strategy for MEV under Fisher market structure, where trades occur
between τ1 and τj for all j ∈ [2 : n], with no trades taking place between τj and τj′ for any
j, j′ ∈ [2 : n]. An interpretation of this model is to view τ1 as USDC and every user’s transaction
is trying to trade between other cryptocurrencies with USDC.

We first give two lemmas to prepare for our optimal MEV algorithm.
The first lemma says that the mediator can independently attack the user transactions that

occur between τ1 and τj for all j ∈ [2 : n].

Lemma 4. For every j ∈ [2 : n], let S1↔j ⊆ [m] be the indices of all users’ transactions that trade
between τ1 and τj, and ATTj be an optimal strategy to attack

{
Batchi

}
i∈S1↔j

. Then, ∪j∈[2:n]ATTj

is an optimal attack to
{
Batchi

}
i∈[m]

, where a union of two strategy is defined as the union of

selected users’ transactions and the union of inserted attacking transactions respectively.

Proof. Let SS1→j denote the set of successfully executed transactions swapping τ1 for τj in the final
batch, while SSj→1 denote the set of successfully executed transactions that bring token τj and get
τ1. Recall that under a market equilibrium, the market clearance condition holds. It implies that
for any token τj where j ∈ [2 : n], we have∑

Batchi∈SS1→j

xij =
∑

Batchi∈SSj→1

wij . (3)

Let p1 and pj be the equilibrium prices of τ1 and τj , respectively. The requirement that everyone
spends their entire profit under the equilibrium implies that∑

Batchi∈SS1→j

xijpj =
∑

Batchi∈SS1→j

wi1p1,
∑

Batchi∈SSj→1

xi1p1 =
∑

Batchi∈SSj→1

wijpj . (4)

Combining Equation (3) and Equation (4), we have∑
Batchi∈SS1→j

wi1 =
∑

Batchi∈SSj→1

xi1. (5)

It means that under equilibrium, the consumed token τ1 in the direction τj → τ1 are all from
the transactions in the opposite direction; and vice versa for token τj according to Equation (3).
In other words, each pair of tokens (τ1, τj) in the Fisher market can be viewed as a sub-market
where transactions between them are self-sufficient under equilibrium. Thus, the mediator is able
to independently attack the user transactions in each sub-market, namely, to consider selecting
which user transactions and inserting which attacking transactions.

14

Now we are able to focus on each individual pair of tokens (τ1, τj) for every j ∈ [2 : n]. The
next lemma further simplifies the strategy space for optimal attacks therein.

Lemma 5. For each pair (τ1, τj) where j ∈ [2 : n], there is an optimal attack which inserts
transactions in at most one direction, specifically. Furthermore, all transactions in this direction
are from the mediator.

Proof. Without loss of generality, suppose the mediator inserts a transaction in each direction
between τ1 and τj where j ∈ [2 : n], denoted by Batchm+1 = (τ1 → τj , δτ1 = wm+1,1, rm+1 = p1/pj)
and Batchm+2 = (τj → τ1, δτj = wm+2,j , rm+2 = pj/p1). If wm+1,1 · p1/pj = wm+2,j where p1 and
pj are the tokens’ equilibrium prices, Batchm+1 and Batchm+2 supply each other, bringing a
utility of 0. Then, removing both transactions has no impact on the mediator’s utility. Otherwise,
let

Batchm+3 =

{
(τ1 → τj , δτ1 = wm+1,1 − wm+2,j · pj/p1, rm+3 = p1/pj), wm+1,1 · p1/pj > wm+2,j ;
(τj → τ1, δτj = wm+2,j − wm+1,1 · p1/pj , rm+3 = pj/p1), wm+1,1 · p1/pj < wm+2,j .

(6)
Following the observation that Batchm+1 and Batchm+2 will be partially exchanged with each
other, replacing them with Batchm+3 has no impact on the batch execution and mediator’s utility.
As a result, only one direction has the attack transaction. In fact, if 1 → j is the direction, then
the prices must satisfy p1/pj ≥ p∗1/p

∗
j , and if j → 1 is the direction, then the prices must satisfy

p1/pj ≤ p∗1/p
∗
j . Otherwise removing this attack transaction (and all user transactions between τ1

and τj) from the batch increases the mediator’s utility.
Then we show that all transaction in this direction are from the mediator. Under equilibrium, if

there are user transactions successfully executed in a this direction, replacing them with attacking
transactions of the same content is still an equilibrium but brings more profit for the mediator.

This concludes the proof.

Now we are ready to describe our main algorithm and state our main theorem.

Theorem 2. Given a set of users’ transactions
{
Batchi

}
i∈[m]

such that they form a Fisher market

(i.e., trades occur exclusively between τ1 and τj for all j ∈ [2 : n], with no trades taking place between
τk and τj for any k, j ∈ [2 : n]), Algorithm 1 finds a strategy that can obtain optimal MEV in time
Õ(m), where the notation Õ(·) hides polylogrithemic factors.

Proof. Algorithm 1 takes a batch of user transactions that forms a Fisher market and the exoge-
nous prices as input and outputs a strategy to make the mediator obtain the optimal profits. It
independently processes each pair (τ1, τj) for all j ∈ [2 : n]. For each pair, it decides which user
transactions to select and how to insert its own attacking transaction (including the direction, the
amount of endowment, and the exchange rate threshold).

As the first step, by Lemma 4, it suffices for Algorithm 1 to work separately on pairs τ1 and τj
for every j ∈ [2 : n]. Fix a j ∈ [2 : n] below. By Lemma 5, it suffices to consider strategies that
only insert attacking transactions in one direction. So Algorithm 1 tries both directions between τ1
and τj and pick the best one. Take the direction τ1 → τj as an example. Again, by Lemma 5, we
can throw away all users’ transactions that are for τ1 → τj direction. Now the question reduces to
the following: Given a set of users’ transactions

{
Batchi

}
i∈S1→j

such that every Batchi is in the

direction τ1 → τj , what is the optimal way for the mediator to select a subset of users’ transactions
and insert its own transactions in the opposite direction, i.e., the τj → τ1 direction?

15

Algorithm 1: Optimal MEV Strategy for Batch Transactions that Form a Fisher Market

Input: A set of users’ transactions
{
Batchi

}
i∈[m]

that forms a Fisher market and a set of

exogenous prices {p∗i }i∈[n].
Output: A strategy for the mediator that obtains optimal profits.

1 Without loss of generality, assume that every transaction trades between τ1 and τj for
j ∈ [2 : n], i.e., τ1 is the special token.

2 for each j from 2 to n do
// Work on the direction τ1 → τj.

3 Let S1→j ⊆ [m] be the set of indices i such that Batchi is in the direction τ1 → τj .
4 Sort transactions in S1→j in an ascending order w.r.t. their exchange rate thresholds

(break tie arbitrarily). Let π1 be such an order and denote the k-th transaction in the

order as Batchπ1(k) = (τ1 → τj , δ
π1(k)
τ1 , rπ1(k)).

5 Let k1 ∈ argmaxk1∈[|S1→j |]

{(∑
k∈[k1] δ

π1(k)
τ1

)
·
(
p∗1 − rπ1(k1) · p∗j

)}
.

6 Let profit1 be the value corresponding to k1.

// Work on the direction τj → τ1.

7 Let Sj→1 ⊆ [m] be the set of indices i such that Batchi is in the direction τj → τ1.
8 Sort transactions in Sj→1 in an ascending order w.r.t. their exchange rate thresholds

(break tie arbitrarily). Let π2 be such an order and denote the k-th transaction in the

order as Batchπ2(k) = (τj → τ1, δ
π2(k)
τj , rπ2(k)).

9 Let k2 ∈ argmaxk2∈[|Sj→1|]

{(∑
k∈[k2] δ

π2(k)
τj

)
·
(
p∗j − rπ2(k2) · p∗1

)}
.

10 Let Profit2 be the value corresponding to k2.

11 if Profit1 ≤ 0 & Profit2 ≤ 0 then
12 Do nothing.

13 else if Profit1 ≥ Profit2 then

14 Include all
{
Batchπ1(k)

}
k∈[k1]

transactions;

15 Insert one mediator’s Batch
(
τj → τ1,

(∑
k∈[k1] δ

π1(k)
τ1

)
· rπ1(k1), 1

rπ1(k1)

)
.

16 else

17 Include all
{
Batchπ2(k)

}
k∈[k2]

transactions;

18 Insert one mediator’s Batch
(
τ1 → τj ,

(∑
k∈[k2] δ

π2(k)
τj

)
· rπ2(k2), 1

rπ2(k2)

)
.

Obviously, we want to control the final prices to satisfy p1/pj ≤ p∗1/p
∗
j (otherwise the mediator

will loss profit), thus we should delete (and ignore) users’ transactions Batchi such that ri > p∗1/p
∗
j .

Suppose that the final exchange rate is p1/pj = r ≤ p∗1/p
∗
j , then for each user’s transaction Batchi

such that ri ≤ r, we can obtain profit δiτ1 · (p∗1 − r · p∗j) ≥ 0. Thus we should include all users’

transactions Batchi such that ri ≤ r.
Now the correct way to attack them seems ready to come out: sort all user transactions in an

ascending order π with respect to their exchange rate thresholds. Then the algorithm enumerates

16

each involved threshold and calculates the corresponding profit:

Profit(k) =

 ∑
k′∈[k]

δπ(k
′)

τ1

 · (p∗1 − rπ(k) · p∗j), (7)

where rπ(k) is exchange rate threshold of the k-th user transaction and δ
π(k′)
τ1 is the endowment of

the k′-th transaction in the order π. This Profit(k) is obtained by setting the threshold of the k-th
transaction as the exchange rate in this direction, selecting all user transactions with thresholds
no larger than that, and inserting an attacking transaction in the opposite direction to provide the

exact amount of token τj they need, which is rπ(k) ·
(∑

k′∈[k] δ
π(k′)
τ1

)
. Let Profit1 and k1 be the

maximal profit and corresponding index for the direction τ1 → τj . Symmetrically, the algorithm
works on the direction τj → τ1 and obtains the Profit2 and k2. If both Profit1 and Profit2 are
no larger than 0, we just ignore all user transactions between π1 and πj and insert no transaction
between them, as neither direction is profitable. Otherwise, choosing the strategy with the highest
profit.

It is easy to verify that all transactions in the batch will be successfully executed. This finishes
the proof.

4.5 Optimal MEV under General Arrow-Debreu Market

In this section, we show the computational hardness of finding an optimal MEV strategy when the
user transactions form a general Arrow-Debreu market.

Theorem 3. Given a set of users’ transactions
{
Batchi

}
i∈[m]

such that they form a general

Arrow-Debreu market, it is NP-hard to compute an optimal strategy.

Proof. We reduce the NP-hard Feedback Arc Set Problem to our MEV optimization problem.
Recall that an instance of the feedback arc set problem contains a directed graph and asks to find
an acyclic subgraph with a maximum number of edges.

Suppose we are given an arbitrary graph G = (V,E) where V is a set of |V | = n vertices
and E is a set of |E| = m directed edges (there are no multiple edges with the same source and
target nodes). Note that we can decide if a graph is acyclic in polynomial time, and if the graph
is acyclic, we can simply output |E| as the answer of the given instance of the Feedback Arc Set
Problem. Thus, without loss of generality, we assume that the graph is not acyclic, which implies
the maximum acyclic subgraph of G has q < m edges.

Then, we construct the MEV optimization problem as follows. For each vertex vi ∈ V , we
construct a token τi and set its exogenous price p∗i as 1. For each edge (i, j) ∈ E, we construct a user

transaction Batch =
(
τi → τj ,m

m, 1
mm

)
. We refer the constructed instance to

{
Batch(i,j)

}
(i,j)∈E

.

The correctness of this reduction follows from the following two lemmas.

Lemma 6. If the maximum acyclic subgraph of G has q edges, then the mediator’s optimal profit

under the instance
{
Batch(i,j)

}
(i,j)∈E

lies in
[(
mm −mm−1

)
· q,mm · q

]
.

Proof. Given Lemma 3, the upper bound proof is easy. Consider any mediator’s strategy
(S,

{
Batchi

}
i∈[m+1:m+k]

) such that the economy graph of
{
Batchi

}
i∈S is acyclic, so we have

17

|S| ≤ q. The requirement of acyclic graph is without loss of generality due to Lemma 3. For each
token in the instance, its demand under a market equilibrium equals the supply. The mediator’s
profit is the value of received tokens in the final allocation minus the value of its initial endowments,
which is upper bounded by the value of users’ initial endowments, i.e., 1 ·mm · q.

The lower bound proof is more involved and we focus on it next.
Assume that G′ = (V ′, E′) is a directed acyclic subgraph of G that has q edges. We construct a

strategy for the mediator that can obtain at least (mm−mm−1) ·q profit. The construction is based
on levels of nodes in G′, which we define next. We start with all nodes that have no incoming edges
and label them as level 1; then we (virtually) remove the level-1 node(s) and all edges taking them
as the source node; next, we label all nodes that have no incoming edges as level 2 and repeatedly
process the remaining subgraph with an increasing level (i.e., level 3, 4, · · ·) until all nodes are
labeled. In this way, all selected user transactions start from a token with a lower level and end at
a token with a higher level.

Now we are able to describe the mediator’s strategy: First, the mediator selects all users’
transactions that correspond to edges in E′. Then for each selected user transaction Batch =(
τi → τj ,m

m, 1
mm

)
in G′, the mediator inserts an attacking transaction Batch′ in its opposite

direction, specifically, Batch′ =
(
τj → τi,m

m+li−lj ,mlj−li
)
where li is the level of node i (i.e.,

token τi). The two steps derive an attacking strategy. Next, we prove that these selected user
transactions and newly inserted attacking transactions are executed under equilibrium, and bring
a profit no less than

(
mm −mm−1

)
· q.

Let p be a price vector of tokens in G′, where token τi’s price pi = mli . It is easy to verify that
p is the price equilibrium where the unique allocation is as follows: Each selected user transaction
Batch =

(
τi → τj ,m

m, 1
mm

)
is executed at the exchange rate mli−lj which is larger than its

requirement 1
mm , and receives mm+li−lj amount of token τj ; Each attacking transaction in the

opposite direction Batch′ =
(
τj → τi,m

m+li−lj ,mlj−li
)
receives mm amount of token τi, bringing

a profit of mm −mm+li−lj ≥ mm −mm−1. Combining that we insert q attacking transactions in
total, the mediator’s profit is at least by

(
mm −mm−1

)
· q.

Lemma 7. If the mediator’s optimal profit is in
[(
mm −mm−1

)
· q,mm · q

]
, then the number of

edges in the maximum acyclic subgraph of G is q.

Proof. The proof in fact follows from the disjointedness of
[(
mm −mm−1

)
· q, (mm − 1) · q

]
for

different q. Specifically, we show the upper bound for q − 1 interval is strictly smaller than the
lower bound of q interval, which follows from the following simple calculation.

q < m ⇒ mq − q > mq −m ⇒ (m− 1)qmm−1 > m(q − 1)mm−1

⇒
(
mm −mm−1

)
· q > mm · (q − 1).

Overall, deciding which interval the mediator’s optimal profit lies in is equivalent to finding the
size of maximum acyclic subgraph of G. So finding an optimal strategy is as hard as solving the
Feedback Arc Set Problem, which is NP-hard.

This finishes the proof.

18

5 Discussion and Open Problems

Approximation Algorithm for AMMs. The MEV optimization problem in fact subsumes the famous
sandwich attack, which has attracted much attention in both academia and industry. However,
as our main theorem in Section 3 showed, it is NP-hard to compute an optimal attack. On the
one hand, this rules out the possibility of having exact efficient optimal algorithm. On the other
hand, it naturally raises the question of studying the approximation algorithms. Note that the
Partition problem that we reduce from is weakly NP-hard, which admits fully polynomial time
approximation scheme (FPTAS). Although the MEV optimization problem has more structure
than knapsack problem thus is seemingly harder than that (maybe closer to scheduling problems),
we still think an efficient approximation algorithm with a good approximation guarantee exists.
We leave this as the first concrete open problem.

Hardness of Approximation for Batch Auctions. As we discussed before, the proof steps used in our
approach suggest that it may remain NP-hard even if we want a polynomial-time algorithm with
good approximation guarantee. In particular, Lemma 6 and Lemma 7 together show that even
if approximating the solution with a roughly additive 1

m fraction would imply P = NP. However,
we conjecture that the stronger hardness of approximation should also hold. While both MEV
optimization problems are NP-hard in the worst-case analysis, showing distinct results in terms of
approximation would also give us new insights to understand their different levels of vulnerability.

Manipulating Market. We provided a polynomial-time algorithm to attack a set of transactions
that form a Fisher market. It is also possible to study the same market equilibrium manipulation
problem for the general linear markets (where the utility functions may have more than two non-zero
coefficients). In particular, we are curious if our ideas could be extended to general linear Fisher
markets to obtain a polynomial-time optimal-attack algorithm. If so, this could be a new point of
view about the fundamental differences between Fisher markets and Arrow-Debreu markets.

Empirical MEV on Batch Auctions. The theoretical results of computational complexity are
fundamental, but our interest of course extends to practical environments MEV, as decentralized
exchanges are happening in blockchain everyday with incredible volumes. Even though optimal
attack is generally an NP-hard problem, it is still promising to design heuristic algorithms to
extract MEV; the possibilities of such novel MEV behaviors were not discussed by the community
before. Technically speaking, our combinatorial structure still provides clear insights about how to
narrow the strategy space for an attack to design strategies. However, to make the whole algorithm
practical, there is still a large space for the design of robust and truly practical algorithms (with very
fast running time). This is beyond the scope of the current work, but we are expecting emerging
works related to MEV in batch auctions in the near future.

References

[1] DeFiprime, “Decentralized exchanges trading volume,” Feb 11th 2024. [Online]. Available:
https://defiprime.com/dex-volume

[2] H. Adams, N. Zinsmeister, M. Salem, R. Keefer, and D. Robinson, “Uniswap v3 core,” Tech.
rep., Uniswap, Tech. Rep., 2021. [Online]. Available: https://uniswap.org/whitepaper-v3.pdf

[3] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels,
“Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and

19

https://defiprime.com/dex-volume
https://uniswap.org/whitepaper-v3.pdf

consensus instability,” in 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 910–927. [Online]. Available:
https://doi.org/10.1109/SP40000.2020.00040

[4] Flashbots, “Mev-explorev1,” Feb 11th 2024. [Online]. Available: https://explore.flashbots.net/

[5] ——, “Flashbots transparency dashboard,” Feb 11th 2024. [Online]. Available: https:
//transparency.flashbots.net/

[6] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency trading on
decentralized on-chain exchanges,” in 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 428–445. [Online].
Available: https://doi.org/10.1109/SP40001.2021.00027

[7] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-in-time discovery of
profit-generating transactions in defi protocols,” in 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 919–936.
[Online]. Available: https://doi.org/10.1109/SP40001.2021.00113

[8] G. Ramseyer, A. Goel, and D. Mazières, “SPEEDEX: A scalable, parallelizable, and
economically efficient decentralized exchange,” in 20th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2023, Boston, MA, April 17-19, 2023,
M. Balakrishnan and M. Ghobadi, Eds. USENIX Association, 2023, pp. 849–875. [Online].
Available: https://www.usenix.org/conference/nsdi23/presentation/ramseyer

[9] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable value: How dark
is the forest?” in 43rd IEEE Symposium on Security and Privacy, SP 2022, San
Francisco, CA, USA, May 22-26, 2022. IEEE, 2022, pp. 198–214. [Online]. Available:
https://doi.org/10.1109/SP46214.2022.9833734

[10] M. Bartoletti, J. H. Chiang, and A. Lluch-Lafuente, “Maximizing extractable value from
automated market makers,” in Financial Cryptography and Data Security - 26th International
Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, ser. Lecture Notes
in Computer Science, I. Eyal and J. A. Garay, Eds., vol. 13411. Springer, 2022, pp. 3–19.
[Online]. Available: https://doi.org/10.1007/978-3-031-18283-9 1

[11] Y. Wang, Y. Chen, H. Wu, L. Zhou, S. Deng, and R. Wattenhofer, “Cyclic arbitrage
in decentralized exchanges,” in Companion of The Web Conference 2022, Virtual Event
/ Lyon, France, April 25 - 29, 2022, F. Laforest, R. Troncy, E. Simperl, D. Agarwal,
A. Gionis, I. Herman, and L. Médini, Eds. ACM, 2022, pp. 12–19. [Online]. Available:
https://doi.org/10.1145/3487553.3524201

[12] C. F. Torres, R. Camino, and R. State, “Frontrunner jones and the raiders of the
dark forest: An empirical study of frontrunning on the ethereum blockchain,” in 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, M. D. Bailey
and R. Greenstadt, Eds. USENIX Association, 2021, pp. 1343–1359. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/torres

[13] Z. Li, J. Li, Z. He, X. Luo, T. Wang, X. Ni, W. Yang, X. Chen, and T. Chen, “Demystifying
defi MEV activities in flashbots bundle,” in Proceedings of the 2023 ACM SIGSAC Conference

20

https://doi.org/10.1109/SP40000.2020.00040
https://explore.flashbots.net/
https://transparency.flashbots.net/
https://transparency.flashbots.net/
https://doi.org/10.1109/SP40001.2021.00027
https://doi.org/10.1109/SP40001.2021.00113
https://www.usenix.org/conference/nsdi23/presentation/ramseyer
https://doi.org/10.1109/SP46214.2022.9833734
https://doi.org/10.1007/978-3-031-18283-9_1
https://doi.org/10.1145/3487553.3524201
https://www.usenix.org/conference/usenixsecurity21/presentation/torres

on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November
26-30, 2023, W. Meng, C. D. Jensen, C. Cremers, and E. Kirda, Eds. ACM, 2023, pp.
165–179. [Online]. Available: https://doi.org/10.1145/3576915.3616590

[14] A. Obadia, A. Salles, L. Sankar, T. Chitra, V. Chellani, and P. Daian, “Unity is strength: A
formalization of cross-domain maximal extractable value,” CoRR, vol. abs/2112.01472, 2021.
[Online]. Available: https://arxiv.org/abs/2112.01472

[15] L. Heimbach and R. Wattenhofer, “Eliminating sandwich attacks with the help of game
theory,” in ASIA CCS ’22: ACM Asia Conference on Computer and Communications Security,
Nagasaki, Japan, 30 May 2022 - 3 June 2022, Y. Suga, K. Sakurai, X. Ding, and K. Sako,
Eds. ACM, 2022, pp. 153–167. [Online]. Available: https://doi.org/10.1145/3488932.3517390

[16] Y. Li, M. Zhang, J. Li, E. Chen, X. Chen, and X. Deng, “MEV makes everyone happy under
greedy sequencing rule,” in Proceedings of the 2023 Workshop on Decentralized Finance and
Security, DeFi 2023, Copenhagen, Denmark, 30 November 2023, K. Qin and F. Zhang, Eds.
ACM, 2023, pp. 9–15. [Online]. Available: https://doi.org/10.1145/3605768.3623543

[17] C. Team, “Cow protocol overview,” September 20th 2023. [Online]. Available: https:
//docs.cow.fi/

[18] Flashbots, “Cowswap solver metrics,” September 20th 2023. [Online]. Available: https:
//dune.com/flashbots/cowswap-solver-metrics

[19] K. J. Arrow and G. Debreu, “Existence of an equilibrium for a competitive economy,” Econo-
metrica: Journal of the Econometric Society, pp. 265–290, 1954.

[20] D. Gale, “The linear exchange model,” Journal of Mathematical economics, vol. 3, no. 2, pp.
205–209, 1976.

[21] B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye, “Leontief economies encode nonzero sum
two-player games,” in SODA, vol. 6, 2006, pp. 659–667.

[22] X. Chen, D. Paparas, and M. Yannakakis, “The complexity of non-monotone
markets,” J. ACM, vol. 64, no. 3, pp. 20:1–20:56, 2017. [Online]. Available:
https://doi.org/10.1145/3064810

[23] R. R. Maxfield, “General equilibrium and the theory of directed graphs,” Journal of Mathe-
matical Economics, vol. 27, no. 1, pp. 23–51, 1997.

A Missing Proofs

We provide the proof of Lemma 1.

Proof of Lemma 1. One direction is relatively easy: If there exists S1 such that
∑

i∈S1
di = t, then

the mediator can obtain MMM profits. The strategy is as follows:

(1) Execute users’ transactions Swapi for all i ∈ S1 (under arbitrary order);

(2) Execute the user’s transaction Swapm+1;

21

https://doi.org/10.1145/3576915.3616590
https://arxiv.org/abs/2112.01472
https://doi.org/10.1145/3488932.3517390
https://doi.org/10.1145/3605768.3623543
https://docs.cow.fi/
https://docs.cow.fi/
https://dune.com/flashbots/cowswap-solver-metrics
https://dune.com/flashbots/cowswap-solver-metrics
https://doi.org/10.1145/3064810

(3) Execute one mediator’s transaction Swap(X → Y, δx = (xℓ − Fx(y0 + L))/(1− f), r = 0).

It is easy to verify that mediator’s profits equal MMM.
The other direction is more involved. We will show that if there doesn’t exist S1 such that∑

i∈S1
di = t, then for any mediator’s strategy, we have U({Swapi}i∈[m+2:m+1+k], π) < MMM.

Fix arbitrary strategy ({Swapi}i∈[m+2:m+1+k], π). Without loss of generality, we assume that

all transactions
{
Swapπ(i)

}
i∈[m′]

for some m′ ∈ [m+1+k] are successfully executed (otherwise we

can put these transactions at the back and mediator’s profits stay the same). We define a potential
function of state ψ : {s}s∈F → R as follows (recall that x∗ = x0 + t):

ψ(x, y) =

(x− xr) · p∗x +

y−Fy(xr)
1−f · p∗y, x > xr;

x−xℓ
1−f · p∗x + (y − Fy(xℓ)) · p∗y, x < xℓ;

0, x ∈ [xℓ, xr].

Let si be the state that is after executing transaction Swapπ(i). Let i∗ be the index with π(i∗) =
m+1, i.e., the user’s transaction Swapm+1(Y → X). We will inductively show that after executing
i-th transaction, the profit of mediator

Ui + ψ(si) ≤ Ui−1 + ψ(si−1)

for all i ∈ [i∗ − 1]. Note that at the beginning of s0, we have U0 = 0 and ψ(s0) = 0. Thus after
induction, we conclude that Ui∗−1 + ψ(si∗−1) ≤ 0. Note that ψ(s) ≥ 0 for all s ∈ F , so we can
conclude that Ui∗−1 ≤ 0. Now let’s move to the induction step and consider any i ∈ [i∗ − 1].

Case 1: Swapπ(i) is a user’s transaction. By the observation mentioned above, we know that
Swapπ(i) is successfully executed. Due to the thresholds of exchange ratios we constructed, we
know that xi ≤ x∗ (recall (⋆) above). Combining with x∗ ≤ xr, this means ψ(si) ≤ ψ(si−1). Note
also that executing a user’s transaction doesn’t affect mediators’ profit. So we have Ui = Ui−1. To
conclude, we have Ui + ψ(si) ≤ Ui−1 + ψ(si−1).

Case 2: Swapπ(i) is a mediator’s transaction. In this case, Ui+ψ(si) ≤ Ui−1+ψ(si−1) directly
follows from the definition of ψ function.

Importantly, if all transactions
{
Swapπ(1), · · · ,Swapπ(i∗−1)

}
are users’ transactions, then we

have x0 ≤ x1 ≤ x2 ≤ · · · ≤ xi∗−1 < x∗. This follows from our condition from the very beginning
that there doesn’t exist S1 ⊂ [m] such that

∑
i∈S1

di = t. If this is the case, then Swapπ(i
∗) will

not be able to be executed successfully due to (⋄) and mediator will not get any profit. Intuitively,
Swapπ(i

∗) is the only transaction where mediator can extract some profits. So to make Swapπ(i
∗)

successfully executed, it has to be the case xi∗−1 ≥ x∗, which means there are some mediator’s

transaction in
{
Swapπ(i)

}
i∈[i∗−1]

.

Let j be the first index where Swapπ(j) is a mediator’s transaction, then we know x0 ≤ xj−1 <
x∗. We will show that Uj+ψ(sj) < Uj−1+ψ(sj−1) (this strict inequality is crucial and is essentially
the reason why the mediator cannot obtain MMM amount of profits). If xj ∈ [xℓ, xr], then we have
ψ(sj) = ψ(sj−1) = 0 but Uj < Uj−1 due to the swap fee. If xj > xr, then we consider two phases
for which xj−1 → xr and xr → xj . For the first phase, due to the same reason above, we have the
ψ stays the same but U decreases. For the second phase, we have U +ψ doesn’t increase. The case
xj < xℓ is similar.

So under the nontrivial case that Swapm+1 is successfully executed (i.e., xi∗−1 ≥ x∗), we have
Ui∗−1 < 0. In the best case for the mediator, xi∗−1 = x∗, Swapm+1 is successfully executed, and

22

the mediator inserts a transaction to extract MMM amount of profits. However, since Ui∗−1 is already
less than 0, we still have the amount of overall profits is strictly less than MMM.

This finishes the proof.

23

	Introduction
	Our Model and Contributions
	Overview of Insights in the Proofs
	Organization

	Background and Related Work
	Maximal Extractable Value
	MEV in AMMs
	Batch Auctions

	Optimal MEV in Constant Function Market Makers
	CFMMs Formalization and Execution of Transactions
	MEV Optimization Problem
	Computational Hardness

	Optimal MEV in Batch Auctions
	Market Equilibrium Formulation of Batch Auctions
	MEV Optimization Problem
	Combinatorial Structures in Optimal Attacks
	Optimal MEV under Fisher Market
	Optimal MEV under General Arrow-Debreu Market

	Discussion and Open Problems
	Missing Proofs

